Multi-qubit entanglement and algorithms on a neutral-atom quantum computer

  • Saffman, M., Walker, TG & Mølmer, K. Quantum information with Rydberg atoms. Rev. Mod. Phys. 822313–2363 (2010).

    ADS CAS Article Google Scholar

  • Jaksch, D. et al. Fast quantum gates for neutral atoms. Phys. Rev. Lett. 852208–2211 (2000).

    ADS CAS PubMed Article Google Scholar

  • Gaëtan, A. et al. Observation of collective excitation of two individual atoms in the Rydberg blockade regime. Nat. Phys. 5115–118 (2009).

    Article CAS Google Scholar

  • Urban, E. et al. Observation of Rydberg blockade between two atoms. Nat. Phys. 5110–114 (2009).

    CAS Article Google Scholar

  • Greenberger, DM, Horne, MA & Zeilinger, A. in Bell’s Theorem, Quantum Theory and Conceptions of the Universe (ed. Kafatos, M.) 69–72 (Springer, 1989).

  • Aspuru-Guzik, A., Dutoi, AD, Love, PJ & Head-Gordon, M. Simulated quantum computation of molecular energies. Science 3091704–1707 (2005).

    ADS CAS PubMed Article Google Scholar

  • Farhi, E., Goldstone, J. & Gutmann, S. A quantum approximate optimization algorithm. Preprint at https://arxiv.org/abs/1411.4028 (2014).

  • Martinez, EA et al. Real-time dynamics of lattice gauge theories with a few-qubit quantum computer. Nature 534516–519 (2016).

    ADS CAS PubMed Article Google Scholar

  • Figgatt, C. et al. Complete 3-qubit Grover search on a programmable quantum computer. Nat. Commun. 81918 (2017).

    ADS CAS PubMed PubMed Central Article Google Scholar

  • DiCarlo, L. et al. Demonstration of two-qubit algorithms with a superconducting quantum processor. Nature 460240–244 (2009).

    ADS CAS PubMed Article Google Scholar

  • Harrigan, MP et al. Quantum approximate optimization of non-planar graph problems on a planar superconducting processor. Nat. Phys. 17332–336 (2021).

    CAS Article Google Scholar

  • Watson, TF et al. A programmable two-qubit quantum processor in silicon. Nature 555633–637 (2018).

    ADS CAS PubMed Article Google Scholar

  • Zhou, X.-Q., Kalasuwan, P., Ralph, TC & O’Brien, JL Calculating unknown eigenvalues ​​with a quantum algorithm. Nat. Photonics 7223–228 (2013).

    ADS CAS Article Google Scholar

  • Scholl, P. et al. Quantum simulation of 2D antiferromagnets with hundreds of Rydberg atoms. Nature 595233–238 (2021).

    ADS CAS PubMed Article Google Scholar

  • Ebadi, S. et al. Quantum phases of matter on a 256-atom programmable quantum simulator. Nature 595227–232 (2021).

    ADS CAS PubMed Article Google Scholar

  • Hauke, P., Cucchietti, FM, Tagliacozzo, L., Deutsch, I. & Lewenstein, M. Can one trust quantum simulators? Rep. Prog. Phys. 75082401 (2012).

    ADS PubMed Article Google Scholar

  • Xia, T. et al. Randomized benchmarking of single-qubit gates in a 2D array of neutral-atom qubits. Phys. Rev. Lett. 114100503 (2015).

    ADS CAS PubMed Article Google Scholar

  • Wang, Y., Kumar, A., Wu, T.-Y. & Weiss, DS Single-qubit gates based on targeted phase shifts in a 3D neutral atom array. Science 3521562–1565 (2016).

    ADS MathSciNet CAS MATH PubMed Article Google Scholar

  • Graham, T. et al. Rydberg mediated entanglement in a two-dimensional neutral atom qubit array. Phys. Rev. Lett. 123230501 (2019).

    ADS CAS PubMed Article Google Scholar

  • Barredo, D., de Leséléuc, S., Lienhard, V., Lahaye, T. & Browaeys, A. An atom-by-atom assembler of defect-free arbitrary two-dimensional atomic arrays. Science 3541021–1023 (2016).

    ADS CAS PubMed Article Google Scholar

  • Endres, M. et al. Atom-by-atom assembly of defect-free one-dimensional cold atom arrays. Science 3541024–1027 (2016).

    ADS CAS PubMed Article Google Scholar

  • Kim, H. et al. In situ single-atom array synthesis using dynamic holographic optical tweezers. Nat. Commun. 713317 (2016).

    ADS CAS PubMed PubMed Central Article Google Scholar

  • Gisin, N. & Bechmann-Pasquinucci, H. Bell inequality, Bell states and maximally entangled states for n qubits. Phys. Lett. A 2461–6 (1998).

    ADS MathSciNet CAS MATH Article Google Scholar

  • Song, C. et al. Generation of multicomponent atomic Schrödinger cat states of up to 20 qubits. Science 365574–577 (2019).

    ADS MathSciNet CAS PubMed Article Google Scholar

  • Pogorelov, I. et al. Compact ion-trap quantum computing demonstrator. PRX Quantum 2020343 (2021).

    ADS Article Google Scholar

  • Omran, A. et al. Generation and manipulation of Schrödinger cat states in Rydberg atom arrays. Science 365570–574 (2019).

    ADS MathSciNet CAS PubMed Article Google Scholar

  • Wineland, DJ, Bollinger, JJ, Itano, WM, Moore, FL & Heinzen, DJ Spin squeezing and reduced quantum noise in spectroscopy. Phys. Rev. A 46R6797 – R6800 (1992).

    ADS CAS PubMed Article Google Scholar

  • Giovannetti, V., Lloyd, S. & Maccone, L. Quantum-enhanced measurements: beating the standard quantum limit. Science 3061330–1336 (2004).

    ADS CAS PubMed Article Google Scholar

  • Saffman, M. & Walker, TG Analysis of a quantum logic device based on dipole-dipole interactions of optically trapped Rydberg atoms. Phys. Rev. A 72022347 (2005).

    ADS Article CAS Google Scholar

  • Carr, AW & Saffman, M. Doubly magic optical trapping for Cs atom hyperfine clock transitions. Phys. Rev. Lett. 117150801 (2016).

    ADS CAS PubMed Article Google Scholar

  • Monz, T. et al. 14-qubit entanglement: creation and coherence. Phys. Rev. Lett. 106130506 (2011).

    ADS PubMed Article CAS Google Scholar

  • Abrams, DS & Lloyd, S. Quantum algorithm providing exponential speed increase for finding eigenvalues ​​and eigenvectors. Phys. Rev. Lett. 835162–5165 (1999).

    ADS CAS Article Google Scholar

  • Bravyi, SB & Kitaev, AY Fermionic quantum computation. Ann. Phys. 298210–226 (2002).

    ADS MathSciNet CAS MATH Article Google Scholar

  • Bravyi, S., Gambetta, JM, Mezzacapo, A. & Temme, K. Tapering off qubits to simulate fermionic Hamiltonians. Preprint at https://arxiv.org/abs/1701.08213 (2017).

  • Kołos, W., Szalewicz, K. & Monkhorst, HJ New Born – Oppenheimer potential energy curve and vibrational energies for the electronic ground state of the hydrogen molecule. J. Chem. Phys. 843278–3283 (1986).

    ADS Article Google Scholar

  • Preskill, J. Quantum computing in the NISQ era and beyond. Quantum 279 (2018).

    Article Google Scholar

  • Peruzzo, A. et al. A variable eigenvalue solver on a photonic quantum processor. Nat. Commun. 54213 (2014).

    ADS CAS PubMed Article Google Scholar

  • Shor, PW Algorithms for quantum computation: discrete logarithms and factoring. In Proc. 35th Annual Symposium on Foundations of Computer Science 124–134 (IEEE, 1994).

  • Harrow, AW, Hassidim, A. & Lloyd, S. Quantum algorithm for linear systems of equations. Phys. Rev. Lett. 103150502 (2009).

    ADS MathSciNet PubMed Article CAS Google Scholar

  • O’Brien, TE, Tarasinski, B. & Terhal, BM Quantum phase estimation of multiple eigenvalues ​​for small-scale (noisy) experiments. New J. Phys. 21023022 (2019).

    ADS MathSciNet Article Google Scholar

  • Endo, S., Cai, Z., Benjamin, SC & Yuan, X. Hybrid quantum-classical algorithms and quantum error mitigation. J. Phys. Soc. Jpn. 90032001 (2021).

    ADS Article Google Scholar

  • Bluvstein, D. et al. A quantum processor based on coherent transport of entangled atom arrays. Nature https://doi.org/10.1038/s41586-022-04592-6 (2022).

  • Hsiao, Y.-F., Lin, Y.-J. & Chen, Y.-C. Λ-enhanced gray-molasses cooling of cesium atoms on the D2 line. Phys. Rev. A 98033419 (2018).

    ADS CAS Article Google Scholar

  • Gillen-Christandl, K., Gillen, G., Piotrowicz, MJ & Saffman, M. Comparison of Gaussian and super Gaussian laser beams for addressing atomic qubits. Appl. Phys. B 122131 (2016).

    ADS Article CAS Google Scholar

  • Gullion, T., Baker, DB & Conradi, MS New, compensated Carr-Purcell sequences. J. Magn. Reson. 89479–484 (1990).

    ADS CAS Google Scholar

  • Kuhr, S. et al. Analysis of dephasing mechanisms in a standing-wave dipole trap. Phys. Rev. A 72023406 (2005).

    ADS Article CAS Google Scholar

  • Levine, H. et al. Parallel implementation of high-fidelity multiqubit gates with neutral atoms. Phys. Rev. Lett. 123170503 (2019).

    ADS CAS PubMed Article Google Scholar

  • Robicheaux, F., Graham, T. & Saffman, M. Photon-recoil and laser-focusing limits to Rydberg gate fidelity. Phys. Rev. A 103022424 (2021).

    ADS CAS Article Google Scholar

  • Saffman, M., Beterov, II, Dalal, A., Paez, EJ & Sanders, BC Symmetric Rydberg controlled-Z gates with adiabatic pulses. Phys. Rev. A 101062309 (2020).

    ADS CAS Article Google Scholar

  • Zhang, S., Robicheaux, F. & Saffman, M. Magic wavelength optical traps for Rydberg atoms. Phys. Rev. A 84043408 (2011).

    ADS Article CAS Google Scholar

  • Leave a Comment